Efficient algorithms for dualizing large-scale hypergraphs
نویسندگان
چکیده
A hypergraph F is a set family defined on vertex set V . The dual of F is the set of minimal subsetsH of V such that F∩H 6= ∅ for any F ∈ F . The computation of the dual is equivalent to many problems, such as minimal hitting set enumeration of a subset family, minimal set cover enumeration, and the enumeration of hypergraph transversals. Although many algorithms have been proposed for solving the problem, to the best of our knowledge, none of them can work on large-scale input with a large number of output minimal hitting sets. This paper focuses on developing timeand space-efficient algorithms for solving the problem. We propose two new algorithms with new search methods, new pruning methods, and fast techniques for the minimality check. The computational experiments show that our algorithms are quite fast even for large-scale input for which existing algorithms do not terminate in a practical time.
منابع مشابه
COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملA New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...
متن کاملParallel algorithms for hypergraph partitioning
Near-optimal decomposition is central to the efficient solution of numerous problems in scientific computing and computer-aided design. In particular, intelligent a priori partitioning of input data can greatly improve the runtime and scalability of large-scale parallel computations. Discrete data structures such as graphs and hypergraphs are used to formalise such partitioning problems, with h...
متن کاملAn Efficient Data Replication Strategy in Large-Scale Data Grid Environments Based on Availability and Popularity
The data grid technology, which uses the scale of the Internet to solve storage limitation for the huge amount of data, has become one of the hot research topics. Recently, data replication strategies have been widely employed in distributed environment to copy frequently accessed data in suitable sites. The primary purposes are shortening distance of file transmission and achieving files from ...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 170 شماره
صفحات -
تاریخ انتشار 2013